你的浏览器OUT了o(╯□╰)o,想更好的浏览网站,请升级你的浏览器: IE8+ Chrome Firefox

mile米乐体育平台

新闻动态 mile体育米乐 试用报告

略论光谱分析工作中仪器条件的选择和有关问题的探讨

发表时间:2023-11-11 21:09:27 来源:mile米乐体育平台

  本文重点讨论了光谱分析测试工作中的一些最重要的核心问题;即:如何明智的选择原子吸收分光光度计(AAS)、紫外可见分光光度计(UVS)、激光拉曼光谱、原子荧光和形态分析等光谱分析仪器的仪器条件等。

  李昌厚,男,1963年毕业于天津大学精密仪器系,中国科学院上海营养与健康研究所(原中国科学院上海生物工程研究中心)原仪器分析室主任、兼生命科学仪器及应用研究室主任、教授、博士生导师、华东理工大学兼职教授;终身享受国务院政府特殊津贴。主要研究方向:分析仪器及其应用研究;长期从事光谱仪器(紫外吸收光谱、原子吸收光谱、旋光光谱、分子荧光光谱、原子荧光、激光拉曼光谱等仪器)、色谱仪器(高效液相色谱、气相色谱等仪器)及其应用研究;特别对《仪器学理论》、各类分析仪器的可靠性设计、影响各类分析仪器可靠性的性能技术指标的测试方法、以及如何评价分析仪器和如何用好分析仪器等有关问题有精深研究。以第一完成者身份,完成科研成果15项。由中国科学院组织专家鉴定;其中13项达到鉴定时国际上同类仪器的领先水平,2项填补国内空白;以第一完成者身份获得国家和省部级(中国科学院、科技部、上海市)科技成果奖5项(含国家发明奖1项);发表论文183篇,出版专著5本。曾任中国仪器仪表学会理事、中国仪器仪表学会分析仪器分会第五届、第六届副理事长;全国物理光学、光谱仪器、高速分析技术等专业委员会副主任、国家认监委计量认证/审查认可国家级常任评审员、国家科技部“十五”、“十一五”、“十二五”和“十三五”多项重大仪器及其应用专项的技术专家组组长或成员、上海市科学仪器专家组成员、《光学仪器》副主编、《生命科学仪器》副主编、《光谱仪器与分析》副主编、上海化工研究院院士专家工作站成员等数十个学术团体的领导职务和成员。曽经先后担任过多个国内外从事各类光谱、色谱等仪器研发、生产和有关媒体等高科技企业和学术团体的技术专家顾问,为他们联合召开的各类技术交流会、各类技术培养和训练会等讲课、做学术报告600多次以上。

  分析仪器使用者的根本任务,就是用好分析仪器。所谓“用好”,就是选择最佳仪器条件,保证得到最佳分析测试数据,或分析误差最小的分析测试数据。因此,使用者对仪器条件的选择就很重要了,它是用好分析仪器、把仪器用到最佳状态、保证得到可靠的分析检验测试的数据的最关键、最根本问题。本文根据仪器学理论、分析化学理论和本人长期研发、使用各类分析仪器的实践,对光谱分析工作中有关分析仪器条件等问题进行了讨论。

  作者在天津大学精密仪器系光学专业,受了五年仪器学的熏陶,毕业后分配在中国科学院工作,长期既研发分析仪器,又使用分析仪器,包括AAS、UVS、激光拉曼、原子荧光等光谱仪器和色谱仪器等。所以,作者对仪器学理论和做仪器与用仪器之间的关系很看重,并且进行了认真研究。本文将根据作者长期的实践、经验和教训,讨论用好这些光谱仪器的核心问题,以供有关的光谱分析仪器研发和使用光谱分析仪器的科技工作人员参考。

  使用者要用好分析AAS仪器,选择仪器条件很重要,例如:火焰AAS有36个条件要选择、石墨炉AAS有48个仪器条件要选择,其中只要有一个条件选择不合适,就非常有可能做不出数据。又例如:石墨炉AAS的四种温度(干燥温度、灰化温度、原子化温度和静化温度)的选择就很重要。干燥温度是去掉样品中的水分或溶剂,一般水样选择100℃、有机溶剂选择120-130℃。但是,有科技工作人员对水样选择干燥温度80℃,对有机溶剂样品选择干燥温度100℃。水要100℃才能完全蒸发,80℃怎么能除掉样品中的水分呢?有些有机溶剂要130℃以上才能挥发,100℃的干燥温度怎么能去掉样品中的有机溶剂呢?因为干燥温度选择不对,不但不能去掉样品中的水分和有机溶剂,不能很好的完成实验,不能得到可靠的分析检验测试的数据,结果反而石墨管也断掉了;挥发温度选择不对,杂质挥发不掉、或者将样品也挥发掉了;原子化温度选择不合适,样品不能完全原子化;静化温度选择不当,上次测试的样品残留物还在石墨管中,这些都将极度影响分析测试误差。

  又如:AAS使用中的调零问题。AAS的调零分为仪器调零和空白调零两种。所谓仪器调零,是消除由于仪器的噪声、漂移、外界干扰等因素造成的仪器零点不在原位的情况,主要是通过仪器的光学、机械、电子学、计算机等来实现仪器归零。如果AAS仪器的调零不好,整个分析过程中,仪器都不可能稳定,不可能得到可靠的分析测试数据。所谓空白调零,是利用空白溶液校正仪器测试样品前的综合零点。这是AAS分析工作者用好仪器、保证分析结果的可靠性最重要的一步。有些分析工作者,为了省事,不管对什么样品的分析,一律用蒸馏水作为空白来调零。这是很不妥的。因为AAS分析的试样越稀,误差越大。所以分析工作者一定要注意调零的问题,不能不分详细情况,盲目用蒸馏水调零。通常来说,使用3倍最小检测限的溶夜或0.5%的硝酸水溶液调零为最佳。但还需要注意试样的PH值,要保证试样与空白的PH值接近,否则,会出现负峰。还有分析线的选择、样品PH值的调节问题等都是用好AAS的关键之一。分析线的选择要格外的注意四个原则:(1)稳定性:不同的吸收线,稳定度有差别。在灵敏度能满足规定的要求时应从稳定度来考虑选吸收线,有些元素有几条灵敏度相差不大的吸收线; Bi 223.1和222.8nm,可从谱线稳定度和减少干扰等方面考虑选择适当的吸收线)干扰度:选择分析线应该尽可能避免干扰,例如:Ni的305.1nm处线性好,谱线单一,干扰小;而Ni的232.0nm处,附近有其它非吸收线等谱线干扰,即使用很小的SBW也很难将它们分开)。所以,分析检测Ni时,从干扰度角度看,Ni305.1nm优于Ni232.0nm。而且,有时宁愿牺牲灵敏度,而选吸收系数稍低的Ni341.48作吸收线)吸收背景:吸收线的选择还要考虑背景干扰。如:Pb 217.0nm处的背景吸收较大,测定精密度较差,目前一般选次灵敏线nm作吸收线) 共振线:共振线在红外区和真空紫外区的元素,应选次灵敏线。例如K,不用红外区的K766.5nm,而用K404.4nm;Hg 不用Hg 184.9 nm而用253.7nm。之所以如此考虑,主要是因为光电倍增管的光谱响应区,一般不在红外区和真空UV区的缘故。此外,还有很多关于火焰AAS和石墨炉AAS使用时需要使用者认真选择的仪器条件,因为篇幅所限,此不赘述。请读者参阅作者在北京科学出版社出版的专著:李昌厚,《原子吸收分光光度计仪器及其应用》,北京:科学出版社,2006。PH值的调节非常重要,如果PH值调节不好,可能出不了峰,有时甚至出倒峰。有时只要改变零点几的PH值,就可以得到很漂亮的峰形(请读者参考作者的原子吸收专著或论文)。

  要用好UVS不是一件简单的事情,有很多仪器条件需要认真选择,否则,也不可能得到最佳的分析检测数据,甚至什么也测试不出来,除仪器的波长、样品的溶剂、样品浓度等等[2]的选择外,还有很多仪器条件需要认真选择,例如灯电流大小、积分时间等等。特别是很多科技工作者不太注意、不大重视的光谱带宽的选择。

  没有真正认识光谱带宽是UVS仪器主要分析误差的来源之一。甚至,有的分析工作者,根本就没有认识到光谱带宽会影响分析误差。作者在长期的实践中深深体会到,光谱带宽是非常重要的技术指标,并在实际工作中对它进行了认真研究。为了研究光谱带宽对分析误差的影响,作者曾对青霉素钠、青霉素钾进行过分析测试研究。我国药典过去规定对青霉素钠、青霉素钾的分析测试用1nm光谱带宽,但作者对同一种浓度的青霉素钠进行分析测试发现:用2nm光谱带宽测试时,吸光度值为0.805Abs;用1nm光谱带宽测试时,吸光度值为0.825Abs;用0.3nm光谱带宽测试时, 吸光度值为0.865Abs;用0.2nm光谱带宽测试时,吸光度值为0.823Abs。实践证明,0.3nm光谱带宽测试时吸光度值最大,2nm光谱带宽测试的结果比0.3nm光谱带宽测试时吸光度值小0.060 Abs,1nm光谱带宽测试时吸光度值比0.3nm光谱带宽测试时吸光度值小0.04Abs。说明,0.3nm光谱带宽是最佳光谱带宽。2nm光谱带宽测试时的吸光度值和0.3nm光谱带宽测试时的吸光度值绝对误差△A为0.06Abs,相对误差为△A/A=0.06/0.865=0.69(6.9%);1nm光谱带宽测试时的吸光度值和0.3nm光谱带宽测试时的吸光度值绝对误差△A为0.040Abs,相对误差为△A/A=0.046(4.6%)。由此可见,光谱带宽的重要性是不言而喻的。但是,在实际工作中,有许多科技工作者很不重视光谱带宽问题。例如:我国某地的某某制药厂,采用国外某公司的UVS作为质检仪器,选择该仪器的光谱带宽为5nm,根本不符合我国和世界各国药典规定用于药品检验的UVS其光谱带宽应为2nm的要求。作者从理论上计算,5nm光谱带宽的紫外可见分光光度计,若要用于药品检验,其测试误差为3%。而很多药品检验时,药典规定要求其分析误差在1%以内。作者将此问题和青霉素钠等问题,向国家药典委的有关专家反映后,引起了重视,所以今天的我国药典对药物分析检测时的光谱带宽没有硬性规定了。因此,作者认为为了得到准确可靠的分析检测数据,减少分析检测误差,使用者一定要高度重视对UVS光谱带宽的选择。作者认为光谱带宽选择的原则应该注意两点:第一,根据分析工作的误差要求选择光谱带宽。因为不同的光谱带宽对同一种物质进行分析测试,有不同的误差,所以,不同行业对光谱带宽有不同的要求。使用者应根据分析工作的误差要求来选取不同的光谱带宽,特别是制药行业、科研工作或要求较高的使用者,更应如此。第二,光谱带宽不能过大或过小。我们应该选择样品的最佳光谱带宽或选择靠近最佳光谱带宽的光谱带宽来分析检测,才能得到最佳分析结果。有些科研工作者以为光谱带宽越小越好(分辨率高),也有科研工作者以为光谱带宽越大越好(能量大,灵敏度高)。其实不然,如前所述,作者对同一浓度的青霉素钠、青霉素钾的测试就不是这样:0.3nm光谱带宽测试时吸光度值最大,比0.3nm光谱带宽大和比0.3nm光谱带宽小的时候,分析测试的数据都比0.3nm光谱带宽小,说明0.3nm的光谱带宽是最佳光谱带宽。认真选择线性动态范围(Linear Dynanic Range-LDR)也是UVS使用者应该重视的问题,这个问题目前还有很多使用UVS的科技工作者没有重视。线性动态范围可以定义为:被分析试样的最大吸光度Amax(保证相对误差为1%时的最大吸光度)除以被分析试样的最小吸光度Amin(保证相对误差为1%时的最小的吸光度),即Amax/Amin。线性动态范围应该是国际上广大药物分析工作者和分析化学工作者们对UVS梦寐以求的一项关键技术指标。可惜我国广大的UVS使用者目前还没有对线性动态范围引起应有的重视。如果一台UVS的线性动态范围很大,那么,它对很浓的试样不需要稀释、对很稀的试样不需要浓缩,都能保证分析误差达到药典规定的相对误差在1%以内的要求,这无疑是一台好仪器。日常工作中,经常听到有人说,试样很浓不要紧,稀释一下就行了;或者说试样很稀不要紧,浓缩一下就行了。但是,他们不知道,“稀释一下”,“浓缩一下”谈何容易,会增加多少麻烦,会带来多少误差。我们说,在日常的分析测试工作中,应该尽可能的避免对试样作稀释或浓缩。这样,既减少麻烦,又有利于提高分析测试数据的可靠性。为了保证分析测试误差在要求的范围内,使用者在分析测试时,一定要注意使用UVS的最佳线性区。否则,不可能得到可靠的分析测试结果。作者长期使用国产TU-1901UVS,曾经实测过TU-1901UVS的线性动态范围,发现其能保证1%相对误差的最小吸光度Amin可到达0.04Abs(至少0.05Abs),能保证1%相对误差的最大吸光度Amax可到达2.2Abs,其线性动态范围为Amax/Amin=2.2A/0.04A=55以上;但作者也曾测试过某国产UVS,发现其能保证1%相对误差的最小吸光度Amin仅为0.3Abs,能保证1%相对误差的最大吸光度Amax仅可到达1.2Abs,其线性动态范围Amax/Amin=1.2Abs/0.3Abs=4!后来,作者仔细研究,发现国产的TU-1901UVS的杂散光为0.01%,噪声为±0.0004Abs,而被测试的某国产紫外可见分光光度计的杂散光为0.3%,噪声为±0.005Abs。因此,作者得出结论:UVS的线性动态范围,完全由仪器的杂散光和噪声决定。若要保证UVS的线性动态范围,则必须先保证杂散光和噪声都很小才行。目前,国外有些UVS产品的杂散光很小(有的达到百万分之几),扫描速度也很快,但是他们不给出仪器的噪声,作者认为是不对的。作者曾对有些不给噪声的国外UVS作过实测,发现他们仪器的噪声很大。如果UVS的噪声大,仪器的信噪比就会很小,它对稍微稀一点的试样就无法检测。因此,UVS的使用者和制造者,一定要特别注意重视仪器的杂散光和噪声。作者的实践证明:如果使用者发现UVS仪器的杂散光和噪声都很大,则该仪器的线性动态范围一定会很小,此时应做线性动态范围检测,以保证用在仪器的最佳线性区。此外,要用好UVS,还必须注意防止试样的光解。什么叫光解?光解是指试样在紫外光的照射下,会发生化学反应,可能减少被检测物的浓度、也可能由于化学反应产生了对入射光有吸收的新的物质。试样的光解问题,是从事UVS的分析工作者会经常碰到的一个棘手的问题,许多使用者,特别是年轻的分析测试工作者,因为缺乏经验,碰到试样的光解时往往不会判断,反而认为是仪器不好,去找仪器的问题,结果事倍功半。如:上海某某制药厂,生产酞丁胺,他们在用UVS作质量检验时,将酞丁胺溶解在50%酒精中,测试波长选为347nm,结果,发现很不稳定。他们每隔半小时测试一次,经过几天的测试,数据始终在波动(始终向偏小的方向变化),根本无法稳定下来,因此,他们开始怀疑仪器有问题。但经过制造厂的维修工程师检修,仪器完全正常。经过很长时间的争论,最后,发现是试样存在光解的问题,即在347nm的紫外光的照射下,试样因为产生光化学反应,浓度一直在变化,进而导致测试数据根本无法稳定下来。又如有些维生素类的药物也会有光解现象,如:某某制药厂,生产维生素B12,根据规定,他们在自己厂里用国产或进口的UVS对维生素B12质检后,还要将厂里质检过的产品送到当地地区药检所去复检以判断产品是否合格。他们在自己厂里质检时都合格(采用几种仪器检测都合格),但送到地区药检所后,每次复检都不合格,后来经过认真研究后才发现是样品光解所致。如何判断被测试样有光解现象呢?这是年轻的分析工作者们感到棘手的问题。其实,这个问很好解决。根据作者的实践经验,首先要看规律,对同一个试样多次测量,看其吸光度值是否都是向同一个方向变化。如果在多次测试中,吸光度值从第一次到最后一次测试的数据都是一直在减小,或一直在增大,这就可能是光解现象所引起的,即试样可能有光解。如果不是向同一个方向变化,在多次测试中,吸光度值有时增大,有时减小,就可以肯定不是光解所致,应另找原因;其次,如果多次测试的数据是向同一个方向变化,这时,可将试样倒进比色皿中,放在仪器的比色皿架上,盖好样品室盖,作一次测试后,不要把试样取出来,而将样品室的光路用文献卡片挡住,待半小时后取去文献卡,再重复测试多次。如果试样没有光解特性,其测试的数据就不会有变化,如果试样有光解,测试的数据就会有变化。用这两种方法检查,如果每次重复测试的数据都有变化,则说明不是光解所致,而是其它原因使测试数据不稳定,这时分析测试工作者,应再找产生不稳定的其它原因。应该如何解决或避免光解的问题?一般也可以采用两种方法处理。其一,把试样存放在棕色瓶中,因为棕色瓶不透紫外光可以防止试样光解;其二,将存放试样的瓶子,用黑纸包住,也同样可防止试样光解。这两种方法,都可以有效的解决防止试样光解的问题。

  重视积分时间和降噪处理技术[6]是用好激光拉曼的关键之一:1)下图是不同积分时间下采集的滑石粉的原始谱图,激光波长为532.038nm,采集样品的激光功率均为10级(约为200mw),平均次数均为1次,积分时间分别为50ms、500ms、1000ms、3000ms、5000ms。实测谱图如下:

  上图说明,认真选择积分时间很重要,必须引起使用者的高度重视。2)下图是对滑石粉试样测试时,降噪处理前后测试结果的比对。

  用好原子荧光和形态分析仪器需要使用者下苦功夫,因为它涉及到光谱(原子荧光)和色谱(HPLC)两种比较复杂的仪器。从仪器学理论和分析工作实际要求看,要用好原子荧光仪器和形态分析仪器,必须重视以下几个问题:

  (1)首先明确样品的基体, 如果样品基体特别简单,则在分析过程中各元素允许酸度范围内选择较低的酸浓度,这样有利于降低试剂空白,节约成本,减小对仪器的腐蚀;

  (2)如果分析元素的成份复杂,特别是含有对氢化反应构成干扰的元素Cu,Co,Ni等时,则适当增大样品酸度,有利于降低干扰。当然也可更换酸的种类,例如测定镍基合金中的Se,As等元素时,用酒石酸、柠檬酸等有机酸,可以使干扰元素的量明显改善。

  (4)如何用好HPLC,请读者参考作者2020年在仪器信息网上[7]的专文。此不赘述。

  什么是仪器学理论?它是一种综合性学科的理论。仪器学理论是一门涉及到多个领域的、复杂的、交叉的、边缘学科的理论,涉及到光学、机械学、电子学、计算机、应用等各个领域,特别是现代分析仪器,都离不开这些方面。

  仪器学理论是一切科学仪器研发者、生产者、使用者应该了解或掌握的最基本、最重要的理论之一。目前,很多仪器使用者,没有重视仪器学理论,往往出现数据不准确或发生疑虑时、分析数据与文献值或标准值不一致时,大家就不知所措!例如:当被测试的试样很稀或很浓时,分析误差会很大,但是中等浓度时,分析误差就正常。为什么?这样的一个问题很多人不清楚。因为,从仪器学理论来讲,所有根据比耳定律设计的分析仪器,都只能适用于一定浓度。噪声N是限制被分析样品浓度下限的,根据仪器学的S/N理论:信号S一定,噪声N大,则仪器S/N就小、灵敏度就低,同时仪器的分析测试误差就会大。而杂散光S.L是限制被分析样品浓度上限的,试样很浓时,浓度与吸光度不成正比就偏离比耳定律,分析误差就会很大。如果有人用UVS检测0.0004Abs的样品,这是违背仪器学理论的。因为目前世界上最好的UVS之一的美国原Varian公司的Cary6000i,其基线Abs,它们的噪声都比0.0004Abs大很多倍,噪声把0.0004Abs的信号淹没了,根本不能检测0.0004Abs的样品。所以,仪器学理论像一把金钥匙,懂了一点仪器学理论,你才会一通百通,知其然也知其所以然。

  分析仪器是给仪器分析工作者使用的,仪器分析工作者对分析仪器的要求是“好用”。所谓“好用”,就是分析仪器要稳定可靠;所谓稳定,就是漂移小、重复性好;所谓可靠,作者在30年前提出,应分为狭义和广义两种。狭义可靠性主要指分析仪器的故障率,它不能全面完整的表达可靠性的内涵。仪器故障不出,但是,分析测试的数据不准,这是最大的不可靠。所以作者提出了广义可靠性的定义:即指分析仪器的可靠性,主要指分析测试数据的准确度高、稳定性好、故障率低和售后服务好。因此,分析仪器的优劣,要在分析测试工作中检验,应由仪器分析工作者(使用者)来评价。分析仪器的好坏,必须要经过分析测试实际使用的检验后才能下结论。所以我们说,制造者是运动员,使用者是裁判员。由于许多分析仪器研发、制造工作者,不了解使用者在如何使用分析仪器、不了解使用者的思路和要求。结果,做仪器和用仪器的人脱节,互不沟通,做出的分析仪器有时不大好用,甚至不好用,这是造成我国分析仪器落后的主要原因之一。所以,分析仪器制造者如果离开使用者,就没有目标。分析仪器使用者如果脱离分析仪器制造者,不了解仪器的基本性能,就不可能用好分析仪器。同样,如果使用者不懂一点仪器知识,不了解仪器的性能指标与分析误差的关系、不会选择仪器条件,是肯定用不好仪器的。

  一台(或一种)新的分析仪器问世,必定是来自仪器分析工作的需要。许多分析仪器都来自应用实践的需求。如:八十年代中期,中科院上海有机化学研究所的知名有机化学家汪猷教授提出:他在核酸研究中发现,五种核苷中有的对UVS有吸收,有的对UVS没有吸收;有的有天然荧光,有的没有天然荧光。国外用HPLC分析测试时,往往用两种检测器(紫外、荧光)串连检测,这样,会使峰形扩散,降低灵敏度。当时,汪猷教授提出,能否研制一种紫外/荧光同时检测(记谱)的HPLC检测器?作者根据他的要求(实践需要),在他的启发下,与他紧密结合,很快发明了一种紫外可见分光光度计和荧光光度计一体化设计、一机两用的多功能新型仪器。它作为HPLC检测器,只需要8微升样品,一次进样,就可得到试样的紫外和荧光两种信息。这种仪器大大减少了试样的扩散,具有很高的灵敏度,并且一次进样,可将五种核苷中的发荧光和不发荧光、有紫外吸收和没有紫外吸收的核苷区分开。该仪器1988年获得了国家发明奖,至今还未见国外报道过同类仪器。这就是分析仪器研发工作来自分析测试工作实际要求的一个很好的典型例子。我们的仪器研发人员应该重视研发仪器与使用仪器的关系。要走出去,向用户学习,从他们那里吸取营养、拓宽思路。

  还有,诺贝尔化学奖得主之一是日本岛津公司的田中耕一,他之所以能得诺贝尔化学奖,主要是他提出了“基体辅助激光解析质谱法”。这是一种对生物分子进行确认和结构分析的新方法。他用激光照射成团的生物大分子,成功的将生物大分子完整地相互分开,并电离,再用飞行时间质谱来测量。这一发明解决了世界上两大难题:第一,解决了成团的生物子结构和成份不受破坏地拆成单个分子的难题;第二,解决了用飞行时间质谱来测量分子量大到50-60万的生物大分子的难题。这一发明,使人类可以通过对蛋白质的详细分析,从而加深对生命进程的了解,使新药开发发生了革命性的变化,并在食品控制、癌症早期诊断等领域有广泛的应用!

  以上事实,足以说明仪器分析工作者(使用仪器者)与分析仪器工作者(生产仪器者)之间关系的重要性,更能说明分析仪器与仪器分析必须紧密结合、相互沟通、相互促进,这个问题,一定要引起广大分析仪器工作者的极大关注。只有这样,才能保证研发分析仪器的人员能真正研发出可靠性好的、好用的分析仪器,才能保证使用者用好分析仪器。

  [1]李昌厚著,《原子吸收分光光度计仪器及其应用》,北京:科学出版社,2006

  [2]李昌厚著,《紫外可见分光光度计及其应用》,北京:化学工业出版社,2010。

  [3]李昌厚著,《紫外可见分光光度计》,北京:化学工业出版社,2005。

  [4]李昌厚著,《高效液相色谱仪器及其应用》,北京:科学出版社,2014。

  [5]李昌厚,便携式激光拉曼仪器及其应用的最新进展,仪器信息网,2019/7/11.

  [7]李昌厚,用好HPLC的九大关键问题,仪器信息网,2020/2/26。

回到顶部